Math, asked by kishorns0710, 1 month ago

Integration of 1/(x+2) (x+1)^1/2​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{dx}{(x + 2) \sqrt{x + 1} }

Its a special case of integration called p - q form, where p and q both are linear equations. We use method of Substitution to evaluate such integral.

 \red{ \: \rm :\longmapsto\:Put \:  \sqrt{x + 1} = y}

\rm :\longmapsto\:x + 1 =  {y}^{2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:dx = 2ydy

On substituting all these values in given integral, we get

 \rm \:  \:  =  \: \displaystyle\int\tt \dfrac{2y \: dy}{( {y}^{2} - 1 + 2) \: y }

 \rm \:  \:  = 2 \: \displaystyle\int\tt \dfrac{ dy}{( {y}^{2} + 1) \: }

 \rm \:  \:  =  \: 2 \:  {tan}^{ - 1}y \:  +  \: c

 \rm \:  \:  =  \: 2 \:  {tan}^{ - 1} \sqrt{x + 1}  \:  +  \: c

Additional Information :-

Integral of the form,

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{dx}{p \sqrt{q} }

4 - Cases arises which are as follow

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c}\sf p&\sf \: q&\sf \:substitute\\\frac{\qquad \qquad}{}&\frac{\qquad \qquad}{}&\frac{\qquad \qquad}{}\\\sf linear&\sf quadratic&\sf \: Put \: q = y\\\\\sf quadratic&\sf linear&\sf \: Put \: q = y\\\\\sf linear &\sf quadratic&\sf \: Put \: p =  \dfrac{1}{y} \\\\\sf quadratic&\sf quadratic&\sf \: x =  \dfrac{1}{y}  \\\frac{\qquad}{}&\frac{\qquad}{}&\frac{\qquad \qquad}{}\\\sf & \sf & \end{array}}\end{gathered}\end{gathered}\end{gathered}

More results :-

 \red{ \boxed{ \sf{ \: \displaystyle\int\tt \dfrac{dx}{ {x}^{2} +  {a}^{2} } =  \frac{1}{a} {tan}^{ - 1}  \frac{x}{a} + c }}}

 \red{ \boxed{ \sf{ \: \displaystyle\int\tt \dfrac{dx}{ {x}^{2} - {a}^{2} } =  \frac{1}{2a}  \: log \: \frac{x - a}{x + a} + c }}}

 \red{ \boxed{ \sf{\displaystyle\int\tt  \: \dfrac{dx}{ \sqrt{ {x}^{2}  +  {a}^{2} }} = log | \: x +  \sqrt{ {x}^{2} +  {a}^{2}  } \:  |  + c}}}

 \red{ \boxed{ \sf{\displaystyle\int\tt  \: \dfrac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} }} = log | \: x +  \sqrt{ {x}^{2}  - {a}^{2}  } \:  |  + c}}}

Similar questions