Math, asked by miznakalanad, 6 months ago

Integration of 1/x^3 sin(logx).dx

Answers

Answered by amansharma264
14

EXPLANATION.

 \sf \:  \implies \:  \int \:  \dfrac{1}{ {x}^{3} } \sin( log(x) )dx

CONCEPT TO BE USED

 \sf \:  \implies \:  { \underline{ \underline{using \: the \: concept \: of \: integration \: by \: parts}}} \\  \\  \sf \:  \implies \:  { \underline{ \underline{we \: can \: say \: as \: a \: product \: rule}}}

 \sf \:  \implies \:  \dfrac{d}{dx} (f(x).g(x)) = f '(x).g(x)  \: + \: f(x).g '(x) \\  \\  \sf \:  \implies \:  \int \: d(f(x).g(x)) =  \int \: f'(x).g(x)dx \:  +  \:  \int \: f(x).g'(x)dx \\  \\ \sf \:  \implies \: { \underline{ \underline{integrate \: with \: respect \: to \:  \: \:  \:  x}}} \\  \\ \sf \:  \implies \:   \boxed{\int \: f(x).g'(x)dx \:  = f(x).g(x) \:  -  \:  \int \: f'(x).g(x)dx}

  \sf \: \implies \: { \underline{ \underline{how \: to \: select \: first \: function\: }}}  \\  \\ \sf \: \implies \:{ \underline{ \underline{ILATE \:}}} \\  \\  \sf \: \implies \: I \:  = inverse \: trigonometry \: function \\  \sf \:  \implies \: L \:  = logarithmic \:  function \\  \sf \:  \implies \: A \:  = algebraic \:function \\  \sf \:  \implies \:  T \:  = trigonometric \: function \\  \sf \:   \implies \: E \:  = exponential \: function

 \sf \:  \implies \:  \int \:  \dfrac{1}{ {x}^{3} }  \sin( log(x) )dx \\  \\  \sf \:  \implies \: let \: I \:  = \int \:  \dfrac{1}{ {x}^{3} }  \sin( log(x) )dx \\  \\ \sf \:  \implies \:  log(x)  = t \\  \\ \sf \:  \implies \: x \:  =  {e}^{t} \\  \\  \sf \:  \implies \: dx \:  =  {e}^{t} dt

\sf \:  \implies \: I \:  =  \int \:  \dfrac{1}{ {e}^{3t} } \sin(t) e {}^{t}dt \\  \\  \sf \:  \implies \:   I \:  =  \int \:  {e}^{ - 2t} \sin(t) dt \\  \\   \sf \:  \implies \: considered \:  \sin(t) as \: first \: function \\  \sf \:  \implies \: considered \:  {e}^{ - 2t} as \: second \: function

 \sf \: \implies \: I =  \:   \sin(t) ( \dfrac{e {}^{ - 2t} }{ - 2})  \: - \:  \int \:  \cos(t) \dfrac{ {e}^{ - 2t} }{2} dt \\  \\  \sf \: \implies \: I \:  =  \:  \frac{ \sin(t) {e}^{ - 2t}  }{ - 2}     \:  \: +  \:  \:  \frac{1}{2} \int \: \cos(t) {e}^{ - 2t} dt \\  \\   \sf \:  \implies \:  I \:  =  \:  \frac{ \sin(t) {e}^{ - 2t}  }{ - 2} \:   \: +  \:  \frac{1}{2}   \Bigg[  \cos(t)  \frac{e {}^{ - 2t} }{2}  \:  \:  -   \int ( -  \sin(t) \frac{ {e}^{ - 2t} }{ - 2}dt \Bigg ]

 \sf \:  \implies \: I \:  =  \:  \dfrac{ \sin(t) {e}^{ - 2t}  }{ - 2}  \:  - \:  \dfrac{1}{4}  \cos(t) {e}^{ - 2t}  \:  -  \:  \int \:  \dfrac{ {e}^{ - 2t} \sin(t)dt  }{4}  \\  \\  \sf \:  \implies \: I  =  \:   {e}^{ - 2t} \Bigg[ \frac{ - 2 \sin(t) \:  -  \:  \cos(t)  }{4}  \Bigg] \:  - \:  \frac{ I }{4}  \\  \\  \sf \:  \implies \:  \frac{5 I }{4} \:    = \:  {e}^{ - 2t} \Bigg[ \frac{ - 2 \sin(t) \:  -  \:  \cos(t)  }{4}\Bigg]

 \sf \:  \implies \: I \:  =  \:  \dfrac{ {e}^{ - 2t} }{5}  [ - 2 \sin(t) \:  -  \:  \cos(t)  ] \:  +  \: c \\  \\  \sf \:  \implies \: I \:  =  \frac{ { - x}^{ - 2} }{5} [ \: 2 \sin( logx ) \:  +  \cos( logx )  ] \:  +  \: c \\  \\  \sf \:  \implies \:  \boxed{ \underline{ \underline{I \:  =  \:  \frac{ - 1}{5 {x}^{2} } [ \cos( log(x) ) \:  +  \: 2 \sin( log(x) )   \: ]  \:  +  \: c}}}

Similar questions