Math, asked by dheeru4012, 3 months ago

integration of 1\√(x-3)*(x-2) dx​

Answers

Answered by mathdude500
3

 \sf \: Let \: I \:  = \displaystyle\int \tt \: \dfrac{dx}{ \sqrt{(x - 3)(x - 2)} }

 \sf \: \: I \:  = \displaystyle\int \tt \: \dfrac{dx}{ \sqrt{ {x}^{2} - 3x - 2x + 6 }  }

 \sf \: \: I \:  = \displaystyle\int \tt \: \dfrac{dx}{ \sqrt{ {x}^{2} - 5x + 6 } }

  • Now, use completing squares method, i.e. add and subtract the square of half of the coefficient of x.

 \sf \: \: I \:  = \displaystyle\int \tt \: \dfrac{dx}{ \sqrt{ {x}^{2} - 5x +  {\bigg(\dfrac{ - 5}{2}  \bigg) }^{2}   -  {\bigg(\dfrac{ - 5}{2}  \bigg)}^{2} + 6}  }

 \sf \: \: I \:  = \displaystyle\int \tt \: \dfrac{dx}{ \sqrt{ {x}^{2}  - 5x +  {\bigg(\dfrac{5}{2}  \bigg)}^{2} - \dfrac{25}{4}   + 6} }

 \sf \: \: I \:  = \displaystyle\int \tt \: \dfrac{dx}{ \sqrt{ {\bigg(x - \dfrac{5}{2}  \bigg)}^{2}  - \dfrac{1}{4} } }

 \sf \: \: I \:  = \displaystyle\int \tt \: \dfrac{dx}{ \sqrt{ {\bigg(x - \dfrac{5}{2}  \bigg)}^{2} -  {\bigg(\dfrac{1}{2}  \bigg)}^{2}  } }

  \boxed{\because \: \:  \displaystyle\int \tt \: \dfrac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} }} = log |x +  \sqrt{ {x}^{2}  -  {a}^{2} } |  + c }

 \sf \: I =  log\bigg|x - \dfrac{5}{2} +  \sqrt{ {\bigg(x - \dfrac{5}{2}  \bigg)}^{2} -  {\bigg(\dfrac{1}{2}  \bigg)}^{2}  }   \bigg|  + c

 \sf \: I = log \bigg |x - \dfrac{5}{2} +  \sqrt{ {x}^{2} - 5x + \dfrac{25}{4}  - \dfrac{1}{4}  }  \bigg|  + c

 \sf \: I = log \bigg |x  - \dfrac{5}{2}  +  \sqrt{ {x}^{2}  - 5x + 6}  \bigg|  + c

 \sf \: I = log \bigg |\dfrac{2x - 5 + 2 \sqrt{ {x}^{2}  - 5x + 6} }{2}  \bigg|  + c

 \sf \: I = log \bigg |2x - 5 + 2 \sqrt{ {x}^{2} - 5x + 6 }   \bigg|  -  log(2)  + c

 \sf \: I = log \bigg |2x - 5 + 2 \sqrt{ {x}^{2} - 5x + 6 }   \bigg|  + d

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

  \boxed{\: \:  \displaystyle\int \tt \: \dfrac{dx}{ \sqrt{ {x}^{2}   +   {a}^{2} }} = log |x +  \sqrt{ {x}^{2}   +   {a}^{2} } |  + c }

  \boxed{ \: \:  \displaystyle\int \tt \: \dfrac{dx}{ {x}^{2}  -  {a}^{2} } = \dfrac{1}{2} log |\dfrac{x - a}{x + a} |  + c }

  \boxed{ \: \:  \displaystyle\int \tt \: \dfrac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} }} =  {sin}^{ - 1} \bigg(\dfrac{x}{a}  \bigg) + c }

\boxed{ \: \:  \displaystyle\int \tt \: \dfrac{dx}{ {x}^{2}   +  {a}^{2} } =\dfrac{1}{a}  {tan}^{ - 1} \bigg(\dfrac{x}{a}  \bigg) + c}

Similar questions