Math, asked by bishtashu, 3 months ago

integration of 1+x+x^2/ x^2(x+1)​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle \int \: \dfrac{1 + x +  {x}^{2} }{ {x}^{2} (1 + x)} \: dx

can be rewritten as

\rm   \: \:  =  \: \:\displaystyle \int \: \dfrac{(1 + x)+  {x}^{2} }{ {x}^{2} (1 + x)} \: dx

\rm   \: \:  =  \: \:\displaystyle \int \: \dfrac{1 + x}{ {x}^{2} (1 + x)} \: dx \:  +  \:  \displaystyle \int \: \dfrac{{x}^{2} }{ {x}^{2} (1 + x)} \: dx

\rm   \: \:  =  \: \:\displaystyle \int \: \dfrac{1}{ {x}^{2}} \: dx +  \displaystyle \int \: \dfrac{1}{(1 + x)} \: dx

\rm   \: \:  =  \: \:\displaystyle \int \:{ {x}^{ - 2}} \: dx +   log(1 + x)  + c

\red{\bigg \{ \because \:\displaystyle \int \:  \frac{1}{x}dx =  log(x) + c\bigg \}}

\rm   \: \:  =  \: \:\displaystyle  \frac{ {x}^{ - 2 + 1} }{ - 2 + 1} +   log(1 + x)  + c

\rm   \: \:  =  \: \:\displaystyle  \frac{ {x}^{ - 1} }{ - 1} +   log(1 + x)  + c

\rm   \: \:  =  \: \:\displaystyle  \frac{ - 1 }{x} +   log(1 + x)  + c

\rm   \: \:  =  \:  - \:\displaystyle  \frac{1 }{x} +   log(1 + x)  + c

Additional Information :-

\red{\rm :\longmapsto\:\displaystyle \int \: {x}^{n}dx =   \frac{ {x}^{n + 1} }{n + 1} \:  + c}

\red{\rm :\longmapsto\:\displaystyle \int \: kdx \:  = kx \:  + c}

\red{\rm :\longmapsto\:\displaystyle \int \: sinx \: dx \:  =  -  \: cosx \:  + c}

\red{\rm :\longmapsto\:\displaystyle \int \: cosx \: dx \:  =   \: sinx \:  + c}

\red{\rm :\longmapsto\:\displaystyle \int \: cosecx \: dx \:  =   -  \: cosex  \: cotx\:  + c}

\red{\rm :\longmapsto\:\displaystyle \int \: secx \: dx \:  =    \: sex  \: tanx\:  + c}

Similar questions