Math, asked by piyushkumar2526, 1 year ago

integration of (2^x+3^x)/5^x

Answers

Answered by Swarup1998
3

Solution :

Now, \displaystyle \mathsf{\int \frac{2^{x}+3^{x}}{5^{x}}dx}

\displaystyle \mathsf{=\int \frac{2^{x}}{5^{x}}dx+\int \frac{3^{x}}{5^{x}}dx}

\displaystyle \mathsf{=\int (\frac{2}{5})^{x}dx+\int (\frac{3}{5})^{x}dx}

\displaystyle \mathsf{=\frac{(\frac{2}{5})^{x}}{log_{e}\frac{2}{5}}+\frac{(\frac{3}{5})^{x}}{log_{e}\frac{3}{5}}+C}

where C is constant of integration.

Rule :

1. \displaystyle \mathsf{\frac{a^{c}}{b^{c}}=(\frac{a}{b})^{c}}

2. \displaystyle \mathsf{\int a^{x}\:dx=\frac{a^{x}}{log_{e}a}+C}

where C is constant of integration

Answered by ITZWildBoy
1

Step-by-step explanation:

\huge\underline\mathfrak\purple{Solution}

Attachments:
Similar questions