Math, asked by RUPESHKUMAR8202, 1 year ago

integration of (2sin2x-cosx) (6-cos2x-4sinx)1/2 dx

Answers

Answered by ravi34287
0
Let I = ∫(2 sin 2x − cos x) dx6−cos2x − 4 sin x=∫(4 sin x . cos x − cos x) dx6 − 1 + sin2x − 4 sin x=∫cos x [4 sin x − 1] dxsin2x−4sin x+5put sin x = t⇒cos x dx = dtNow, I = ∫(4t−1)t2−4t+5 dtLet 4t−1 = A×ddt(t2−4t+5) + B⇒4t−1 = A (2t−4) + B⇒4t−1 = 2At − 4A + B⇒2A = 4 ⇒A = 2and −4A + B = −1⇒−8 + B = −1⇒B = 7so,  4t−1 = 2(t2−4t+5) + 7So, I = 2∫(2t−4)(t2−4t+5) dt + 7∫dt(t2−4t+5)   .....(1)Let I1 = ∫(2t−4)(t2−4t+5) dtPut (t2−4t+5) = v⇒(2t−4) dt = dvSo, I1 = ∫dvv = log ∣∣v∣∣ = log∣∣t2−4t+5∣∣Now, I2 =∫dt(t2−4t+5)=∫dt[t2−4t+4] +1=∫dt(t−2)2 + (1)2=tan−1(t−2)So, I = 2log∣∣t2−4t+5∣∣ + 7tan−1(t−2) + CI = 2 log ∣∣sin2x−4 sin x + 5∣∣ + 7 tan−1[sin x − 2] + C
Hope this would clear your doubt about the topic.

If you have any other doubt just ask her on the forum and our experts will try to help you out as soon as possible.
Similar questions