integration of (2x - 1 )/ (4x^2 +4x + 2)^1/2
Answers
Answered by
1
Hey there !!!!
------Equation 1
let ,
4x²+4x+2=t²
differentiating wrt to t
(8x+4)dx=2tdt
dx= tdt/2(2x+1)
Substituting dx= tdt/2(2x+1) and 4x²+4x+2=t² in equation 1
Now splitting the numerator
Now adding and subtracting 1 in the first part of numerator
Further splitting the first part
----- Equation 2
But 4x²+4x+2=t²
(2x+1)²=t²-1
(2x+1)=√t²-1
Now substituting the above in equation 2
=t-2cosh⁻¹ t
=-2cosh⁻¹()
Hope this helped you ......................
------Equation 1
let ,
4x²+4x+2=t²
differentiating wrt to t
(8x+4)dx=2tdt
dx= tdt/2(2x+1)
Substituting dx= tdt/2(2x+1) and 4x²+4x+2=t² in equation 1
Now splitting the numerator
Now adding and subtracting 1 in the first part of numerator
Further splitting the first part
----- Equation 2
But 4x²+4x+2=t²
(2x+1)²=t²-1
(2x+1)=√t²-1
Now substituting the above in equation 2
=t-2cosh⁻¹ t
=-2cosh⁻¹()
Hope this helped you ......................
sumalatha1:
thanks :))
Answered by
2
I = (2x -1)dx/√(4x² + 4x + 2)
(4x² + 4x + 2) = P { let }
differentiate wrt x
8x + 4 = dP/dx
(8x + 4)dx = dP
now,
I ={ 2/8.(8x + 4) -2 }dx /√(4x² + 4x +2)
=1/4.(8x + 4)dx/√(4x² + 4x +2) -2dx/√(4x² + 4x +2)
put above results
I =1/4. dp/√P - 2dx/√(4x² + 4x +2)
I = 1/2.√P - 2dx/√{(2x + 1)² +1² }
I = 1/2√(4x² +4x + 2) -2dx/√{(2x +1)² +1²}
[ use, dx/√(x² + a² ) = ln(x + √(x² + a²) ) ]
I = 1/2.√(4x² + 4x +2) - 2/2ln{( 2x + 1 + √(4x² + 4x +2) }
I = 1/2.√(4x² +4x +2) -ln{ 2x +1 +√(4x²+4x +1) } + C
(4x² + 4x + 2) = P { let }
differentiate wrt x
8x + 4 = dP/dx
(8x + 4)dx = dP
now,
I ={ 2/8.(8x + 4) -2 }dx /√(4x² + 4x +2)
=1/4.(8x + 4)dx/√(4x² + 4x +2) -2dx/√(4x² + 4x +2)
put above results
I =1/4. dp/√P - 2dx/√(4x² + 4x +2)
I = 1/2.√P - 2dx/√{(2x + 1)² +1² }
I = 1/2√(4x² +4x + 2) -2dx/√{(2x +1)² +1²}
[ use, dx/√(x² + a² ) = ln(x + √(x² + a²) ) ]
I = 1/2.√(4x² + 4x +2) - 2/2ln{( 2x + 1 + √(4x² + 4x +2) }
I = 1/2.√(4x² +4x +2) -ln{ 2x +1 +√(4x²+4x +1) } + C
Similar questions