Math, asked by jidnyasa26, 10 months ago

Integration of 3x^2/x^6+1​

Answers

Answered by BendingReality
11

Answer:

\displaystyle \longrightarrow \tan^{-1}(x^3)+C \\

Step-by-step explanation:

Let :

\displaystyle \text{I} = \int\limits {\frac{3x^2}{x^6+1} } \, dx \\ \\

Using substitution method :

\displaystyle u = x^3 \\ \\

Diff. w.r.t. x we get :

\displaystyle \longrightarrow \frac{du}{dx} =3x^2 \\ \\

\displaystyle \longrightarrow dx=\left(\frac{1}{3x^2}\right).du \\ \\

Now :

\displaystyle \text{I} = \int\limits {\frac{3x^2}{((x^3)^2+1} } \, dx \\ \\

Putting value here we get :

\displaystyle \text{I} = \int\limits {\frac{1}{u^2+1} } \, du \\ \\

We know :

\displaystyle \int\limits {\frac{1}{x^2+1} } \, dx = \tan^{-1}(x)\\ \\

\displaystyle \longrightarrow \text{I} = \tan^{-1}(u)+C \\ \\

\displaystyle \sf But \ u=x^3 \\ \\

\displaystyle \longrightarrow \text{I} = \tan^{-1}(x^3)+C \\ \\

Hence we get required answer!

Similar questions