Integration of 5 x cube plus 2 x raised to minus 5 minus 7x plus one by root x plus 5 by x
Answers
Answer:
Step-by-step explanation:
Given,
Hence,
We get the integration value as
Answer:
(5/4)x⁴-(1/2)x⁻⁴-(7/2)x²+2√x+5logx+c
Step-by-step explanation:
formulee used---->
------------------------
1)∫xⁿdx=(xⁿ⁺¹/n+1)+c, where n≠-1
2)∫(1/x)dx=logx+c
Now returning to original question
Let
I= ∫{5x³+2x⁻⁵-7x+(1/√x)+(5/x)}dx
We do intregation one by one
∫5x³dx=5 (x³⁺¹/3+1)=(5/4)x⁴
∫2x⁻⁵dx=2(x⁻⁵⁺¹/-5+1)=(2/-4)x⁻⁴=(-1/2)x⁻⁴
∫7xdx =7(x¹+¹/1+1)=(7/2)x²
∫(1/√x)dx=∫x⁻¹/²dx=(x⁻¹/²+¹)/(-1/2)+1
=2x¹/²
∫(5/x)dx=5logx
Now
I=(5/4)x⁴-(1/2)x⁻⁴-(7/2)x²+2x¹/²+5logx+c
Additional information---->
-------------------------------------
1)∫eˣdx=eˣ+c
2)∫aˣdx=(aˣ/loga)+c
3)∫sinxdx=-cosx+c
4)∫cosxdx=sinx+c
5)∫sec²xdx=tanx+c
6)∫secx tanx dx=secx+c
7)∫cosec²xdx=-cotx+c
8)∫cosecx cotx dx=-cosecx+c