Math, asked by paaji517, 22 days ago

Integration of 5x/(x²-2x+2) (x+1) dx

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

 \displaystyle \sf{ \int \dfrac{5x}{ \left( {x}^{2}  - 2x + 2 \right) \left(x + 1 \right)} \: dx}

Decomposing into partial fraction,

 \rm{ \dfrac{5x}{ \left(  {x}^{2} - 2x  + 2 \right)\left( x  + 1 \right)} = \dfrac{Ax + B}{ {x}^{2} - 2x + 2 } +  \dfrac{C}{x + 1}  }

 \rm{  \implies\dfrac{5x}{ \left(  {x}^{2} - 2x  + 2 \right)\left( x  + 1 \right)} = \dfrac{ \left(Ax + B \right) \left(x + 1 \right) + C \left({x}^{2} - 2x + 2 \right)}{ \left({x}^{2} - 2x + 2 \right) \left( x + 1\right)}  }

 \rm{  \implies5x= Ax ^{2}  + Bx + Ax + B+ C {x}^{2} - 2Cx + 2C  }

 \rm{  \implies5x= (A + C)x ^{2}    + (A + B - 2C)x + (B  + 2C ) }

On comparing the coefficients,

 \rm{  \implies A + C = 0   \:  \:  \:  \:  , \:  \:  \:  \: A + B - 2C = 5  \:  \:  \:  \: ,  \:  \:  \:  \: B + 2C  = 0 }

On solving these, we get,

 \rm{  \implies A  = 1 \:  \:  \:  \: ,  \:  \:  \:  \:  B = 2 \:  \:  \:  \: ,  \:  \:  \:  \: C =  - 1    }

So,

 \displaystyle \sf{ \int \dfrac{x + 2}{  {x}^{2}  - 2x + 2} \: dx -  \int \dfrac{dx}{x + 1}}

 \displaystyle  = \sf{ \int \dfrac{x  - 1 + 3}{  {x}^{2}  - 2x + 2} \: dx -  \int \dfrac{dx}{x + 1}} \\

 \displaystyle  = \sf{ \int \dfrac{x  - 1 }{  {x}^{2}  - 2x + 2} \: dx +3  \int\dfrac{dx }{  {x}^{2}  - 2x + 2} -  \int \dfrac{dx}{x + 1}} \\

 \displaystyle  = \sf{ \dfrac{1}{2}  \int \dfrac{2x  - 2}{  {x}^{2}  - 2x + 2} \: dx +3  \int\dfrac{dx }{  {x}^{2}  - 2x + 1 + 1} -  \int \dfrac{dx}{x + 1}} \\

 \displaystyle  = \sf{ \dfrac{1}{2}  \ln| {x}^{2}  - 2x + 2|  +3  \int\dfrac{dx }{  {(x - 1)}^{2}   + 1} -  \int \dfrac{dx}{x + 1}} \\

 \displaystyle  = \sf{ \dfrac{1}{2}  \ln| {x}^{2}  - 2x + 2|  +3  \: tan^{ - 1} (x - 1)-   \ln | x + 1 |  + c} \\

 \displaystyle  = \sf{  \ln \left|  \sqrt{{x}^{2}  - 2x + 2 } \right|  +3  \: tan^{ - 1} (x - 1)-   \ln | x + 1 |  + c} \\

\displaystyle  = \sf{  \ln \left|  \dfrac{ \sqrt{{x}^{2}  - 2x + 2 }}{x + 1} \right|  +3  \: tan^{ - 1} (x - 1) + c} \\

Similar questions