integration of alphadt
Answers
Answered by
1
Answer:
α t + C
Step-by-step explanation:
To find---> ∫ α dt
Solution---> We have to find intregation of α with respect to t,so α is cosidered as constant
Now we know that
∫ 1 dt = t + C
Now, returning to original problem,
∫ α dt = α ∫ 1 dt
= α t + C
Additional information---->
1) ∫ xⁿ dx = xⁿ⁺¹ / ( n + 1 ) + C
2) ∫ eˣ dx = eˣ + C
3) ∫ aˣ dx = aˣ / loga + C
4) ∫ Sinx dx = -Cosx + C
5) ∫ Cosx dx = Sinx + C
6) ∫ Sec²x dx = tanx + C
7) ∫ Cosec²x dx = -Cotx + C
8) ∫ Cosecx Cotx dx = - Cosecx + C
9) ∫ Secx tanx dx = Secx + C
Answered by
0
Answer:
Step-by-step explanation:
∫ α dt
∫ 1 dt = t + C
∫ α dt = α ∫ 1 dt
= α t + C
Similar questions