Math, asked by Anshuman127, 2 months ago

integration of cos{2cot^-1 (√(1+x) /√(1-x) }dx​

Answers

Answered by Neev08
4

abc's I am rejoining because I can't see the attached file is scanned image in PDF format to do it for the chai na kal isliye message was automatically generated by you against the spirit of fair play that all of the

Answered by MysticalStar07
227

 \sf∫ \cos( 2 \cot^{ - 1}{ (  \ \sqrt \frac{1 - x}{1 + x} ))dx}

 \\

 \sf Let \:  x = cosθ  \\ \\ \\  \sf dx =  - sinθ  \: dθ \\   \\

 \sf∫  \cos  [2 \cot^{ - 1}( \sqrt  \frac{1 -  \cosθ}{1+  \cosθ} )] dθ

 \\  \\

\sf \implies ∫ \cos[2 \cot^{ - 1} \:  \{tan ( \frac{θ}{2}) \}]dθ

 \\  \\

\sf \implies ∫ \cos[2 \cot^{ - 1} \{ \cot( \frac{\pi}{2} -  \frac{θ}{2}) \}]dθ

 \\  \\

\sf \implies ∫ \cos[2( \frac{\pi}{2} -  \frac{θ}{2}) ]dθ

 \\  \\

\sf \implies ∫ cos(π – θ) dθ

 \\  \\

\sf \implies – ∫ cos(θ) dθ

 \\  \\

\sf \implies – sinθ + c

 \\  \\

\sf \implies – √(1 – x2) + c

Similar questions