Math, asked by kushboosinha3375, 10 months ago

Integration of cos^2x / 1+sinx dx=

Answers

Answered by sonuvuce
12

\boxed{\int \frac{\cos^2x}{1+\sin x} dx=x+\cos x+c}

Step-by-step explanation:

\int \frac{\cos^2x}{1+\sin x} dx

=\int\frac{1-\sin^2x}{1+\sin x}dx    (∵\sin^2x+\cos^2x=1)

=\int\frac{(1-\sin x)(1+\sin x)}{(1+\sin x)}dx  (∵ [tex]a^2-b^2=(a+b)(a-b))

=\int (1-\sin x)dx

=\int dx-\int sin x dx

=x-(-\cos x)+c  (where, c is a constant)

=x+\cos x+c

Hope this answer is helpful,

Know More:

Q: Integration of cos2x/cos^2x sin^2x = -secx cosecx

Click Here: https://brainly.in/question/1332500

Q: Integral 1 - sin x by cos square x dx

Click Here: https://brainly.in/question/6693546

Answered by dikshaverma4you
6

INTEGRATION

Q. To integrate cos²x/1+sin x

\int\limits {\frac{cos^{2} x }{1+sinx} } \, dx \\\\\int\limits {\frac{1-sin^{2}x }{1+sinx} } \, dx \\\\\int\limits{\frac{(1+sinx)(1-sinx)}{1+sinx} } \, dx \\\\\int\limits {(1-sinx)} \, dx \\\\\int\limits {1.} \, dx - \int\limits {sinx.} \, dx \\\\x - (- cosx) + C\\\\ \boxed { \int\limits {\frac{cos^{2} x }{1+sinx} } = x + cosx + C }

It is necessary to add Integration Constant "C" in order to cover the family of function as it is an indefinite integration. There is no need to add "C" if the integration is definite.

Similar questions