Math, asked by kalyani8018, 9 months ago

integration of cos^3x​

Answers

Answered by jayjaylove120
1

Answer: Cos3x=4cos^3(X)-3cos (X). Therefore cos^3(x)=(cos3x+3cosx)/4.

Step-by-step explanation:

Substitute this value and can continue the integration.

Answered by sandy1816
0

 \int \:  {cos}^{3} xdx \\  \\  =  \int \:  \frac{1}{4} (cos3x + 3cosx)dx \\  \\  =  \frac{1}{4}  \int \:cos3x \: dx +  \frac{3}{4}  \int \: cosx \: dx \\  \\  =  \frac{1}{4}  \frac{sin3x}{3}  +  \frac{3}{4} sinx + c \\  \\  =  \frac{1}{12} sin3x +  \frac{3}{4} sinx + c

Similar questions