Math, asked by st31508p7zp2f, 1 year ago

integration of Cos^5X

Answers

Answered by AaanyaKandwal
2
=∫(cos5x)dx

From trigonometric identity, which is

cos2x+sin2x=1, ⇒cos2x=1−sin2x

=∫(cos4x)⋅cos(x)dx

=∫(cos2x)2⋅cos(x)dx

=∫(1−sin2x)2⋅cos(x)dx .. (i)

let's assume sinx=t, ⇒(cosx)dx=dt

substituting this in the (i), we get

=∫(1−t2)2dt

Now using expansion of (1−y)2=1+y2−2y, yields,

=∫(1+t4−2t2)dt

=∫dt+∫t4dt−2∫t2dt

=t+t55−2⋅t33+c, where c is a constant

=t+t55−23⋅t3+c, where c is a constant

now substituting t back gives,

=sinx+(sinx)55−23⋅(sinx)3+c, where cis a constant

=sinx+sin5x5−23⋅sin3x+c, where c is

Answered by ᎪɓhᎥⲊhҽᏦ
17

Questions:-

  \displaystyle\int \rm \:  { \cos}^{5} x \: dx

Solution:-

There is no direct formulae to find this integral. so, let's simplify the given trigonometric term

cos⁵x = cos⁴x.cosx = (cos²x)².cosx

[We know cos²x = 1- sin²x ]

so put it  we get,

= (1-sin²x)².cosx

Now we can find the integration

so put it,

  = \displaystyle \int \rm \:  {(1 -  { \sin}^{2} x})^{2} . \cos x \: dx

put sin x = t

cos x dx = dt

  = \displaystyle \int \rm \:  {(1 -  { t}^{2}})^{2} . dt

  = \displaystyle \int \rm \:  ( 1 +  {t}^{4}  - 2 {t}^{2} )dt

 = \displaystyle \int \rm  {t}^{4} dt +  \int \: 1dt \:  -  \int \: 2 {t}^{2} dt

  \rm =  \dfrac{ {t}^{5} }{5}  + t - 2 \times  \dfrac{ {t}^{3} }{3}  + c

Now put the value of  t we get

 \rm \:  =  \dfrac{ {  \sin }^{5}x }{5}  +  \sin x -  \dfrac{ { 2\sin }^{3} x}{3}  + c

 \rm =  \sin x -  \dfrac{2}{3}  { \sin}^{3} x +  \dfrac{1}{5}  { \sin}^{5} x + c

Some Important integration formulae

\displaystyle\int \rm{x}^{n }dx =   \dfrac{ {x}^{n + 1} }{n + 1}

\displaystyle\int \rm{ \sin x \: dx =  -  \cos x + c}

\displaystyle\int \rm{ \ \cos x \: dx =   \:   \sin  x + c}

\displaystyle\int \rm{  { \sec }^{2}  x \: dx =   \tan  x + c} \\

\displaystyle\int \rm{  { \csc }^{2}  x \: dx =   -  \cot  x + c}

\displaystyle \int \rm  \sec  x . \tan x =  \sec x + c

\displaystyle \int \rm  \csc  x . \cot x =   - \csc x + c

ᎪɓhᎥⲊhҽᏦ ( Brainly.in)

Thank you :)

Similar questions