Math, asked by KZKZK, 1 year ago

Integration of cos2x/cos^2x sin^2x = -secx cosecx

Answers

Answered by abhi178
87
∫cos2x.dx/sin²x.cos²x

[cos2x = cos²x - sin²x , use this here ]
⇒∫(cos²x - sin²x ).dx/sin²x.cos²x
⇒∫dx/sin²x - ∫dx/cos²x 
⇒∫cosec²x.dx - ∫sec²x.dx 
⇒ -cotx - tanx 
⇒-(sinx/cosx + cosx/sinx)
⇒-(sin²x + cos²x )/sinx.cosx 
⇒-1/sinx.cosx
⇒ - secx.cosecx 
Answered by omaridrihilfs09
12

Answer:

Step-by-step explanation:

∫cos2x.dx/sin²x.cos²x

[cos2x = cos²x - sin²x , use this here ]

⇒∫(cos²x - sin²x ).dx/sin²x.cos²x

⇒∫dx/sin²x - ∫dx/cos²x 

⇒∫cosec²x.dx - ∫sec²x.dx 

⇒ -cotx - tanx 

⇒-(sinx/cosx + cosx/sinx)

⇒-(sin²x + cos²x )/sinx.cosx 

⇒-1/sinx.cosx

⇒ - secx.cosecx 

Read more on Brainly.in - https://brainly.in/question/1332500#readmore

Similar questions