Integration of cos2x/cos^2x sin^2x = -secx cosecx
Answers
Answered by
87
∫cos2x.dx/sin²x.cos²x
[cos2x = cos²x - sin²x , use this here ]
⇒∫(cos²x - sin²x ).dx/sin²x.cos²x
⇒∫dx/sin²x - ∫dx/cos²x
⇒∫cosec²x.dx - ∫sec²x.dx
⇒ -cotx - tanx
⇒-(sinx/cosx + cosx/sinx)
⇒-(sin²x + cos²x )/sinx.cosx
⇒-1/sinx.cosx
⇒ - secx.cosecx
[cos2x = cos²x - sin²x , use this here ]
⇒∫(cos²x - sin²x ).dx/sin²x.cos²x
⇒∫dx/sin²x - ∫dx/cos²x
⇒∫cosec²x.dx - ∫sec²x.dx
⇒ -cotx - tanx
⇒-(sinx/cosx + cosx/sinx)
⇒-(sin²x + cos²x )/sinx.cosx
⇒-1/sinx.cosx
⇒ - secx.cosecx
Answered by
12
Answer:
Step-by-step explanation:
∫cos2x.dx/sin²x.cos²x
[cos2x = cos²x - sin²x , use this here ]
⇒∫(cos²x - sin²x ).dx/sin²x.cos²x
⇒∫dx/sin²x - ∫dx/cos²x
⇒∫cosec²x.dx - ∫sec²x.dx
⇒ -cotx - tanx
⇒-(sinx/cosx + cosx/sinx)
⇒-(sin²x + cos²x )/sinx.cosx
⇒-1/sinx.cosx
⇒ - secx.cosecx
Read more on Brainly.in - https://brainly.in/question/1332500#readmore
Similar questions