Math, asked by pallavipatnaik, 4 months ago

integration of cos⁴x - sin⁴x/cosx - sinx × dx​

Answers

Answered by mathdude500
4

Answer:

Question:-

\bf \:Evaluate:  ∫\dfrac{ {cos}^{4} x -  {sin}^{4} x}{cosx - sinx} dx

Answer

Identity used :-

\bf \: {x}^{4}  -  {y}^{4}  = (x - y)(x + y)( {x}^{2}   +  {y}^{2} )

\bf \: {sin}^{2} x +  {cos}^{2} x = 1

\bf \: ∫sinx \: dx =  - cosx + c

\bf \: ∫cosx \: dx \:  = sinx + c

Solution:-

\bf \:∫\dfrac{ {cos}^{4} x -  {sin}^{4} x}{cosx - sinx} dx

\bf\implies \:∫\dfrac{(sinx + cosx)(cosx - sinx) ({sin}^{2} x  + {cos}^{2} x)}{cosx - sinx} dx

\bf\implies \: ∫(sinx + cosx)dx

\bf\implies \: ∫sinx \: dx +  ∫cosx \: dx

\bf\implies \: - cosx + sinx + c

_____________________________________________

Similar questions