integration of cosdthita / 4-9sin²
Answers
Answered by
3
Answer:
Hello,
∫ [sinx cosx /(4cos²x + 9sin²x)] dx =
let's split 9sin²x into 4sin²x + 5sin²x:
∫ [sinx cosx /(4cos²x + 4sin²x + 5sin²x)] dx =
∫ {sinx cosx /[4(cos²x + sin²x) + 5sin²x]} dx =
(applying the identity cos²x + sin²x = 1)
∫ {sinx cosx /[4(1) + 5sin²x]} dx =
∫ [sinx cosx /(4 + 5sin²x)] dx =
let's divide and multiply by 10 obtaining in the numerator the derivative of the denominator:
(1/10) ∫ [10sinx cosx /(4 + 5sin²x)] dx =
(1/10) ∫ d(4 + 5sin²x) /(4 + 5sin²x) =
ending with:
(1/10) ln (4 + 5sin²x) + C
Similar questions