Math, asked by mateenrajpurkar542, 11 months ago

integration of cosx/1+cosx​

Answers

Answered by manissaha129
0

Answer:

 →\int \frac{ \cos(x) }{1 +  \cos(x) } dx \\ =   \int \frac{ \cos(x) + 1 - 1 }{1 +  \cos(x) } dx \\ = \int \frac{1 +  \cos(x) }{1 + cos(x)} dx -  \int \frac{1}{1 +  \cos(x) } dx \\   = \int dx -  \int \frac{1}{2 { \cos}^{2}( \frac{x}{2} ) } dx \\  =  \int dx-  \frac{1}{2}  \int \sec ^{2} ( \frac{x}{2} ) dx \\  = x -  \frac{1}{2} ( \frac{ \tan( \frac{x}{2} ) }{ \frac{1}{2} } ) + C \\  = x -  \tan( \frac{x}{2} )  + C

  • x-tan(x/2)+C is the right answer.
Similar questions