Math, asked by aniket2002kumarak, 10 months ago

integration of cot dx/3+4 log sinx

Answers

Answered by rishu6845
10

Answer:

 \bold{\dfrac{1}{4} \:  \:   log(3 + 4 \:  log \: sinx)  \:  +  \: c}

Step-by-step explanation:

\underline{\bold{To \: find}} =  >  \\ \displaystyle\int \dfrac{cotx}{3 + 4log \: sinx}  \: dx

\underline{\bold{Concept \: used}} =  >  \\ 1) \:  \dfrac{d}{dx} (sinx) = cosx \\ 2) \:  \displaystyle\int\dfrac{dx}{x}  = logx

\underline{\bold{Solution}} =  >  \\  \displaystyle\int\frac{cotx}{3 + 4 \: log \: sinx} dx

let  \\ 3 + 4 \: sin \: logx \:  = t \\ differentiating \: both \: sides \\ ( \: 0 + 4 \:  \dfrac{cosx}{sinx}  \: ) \: dx \:  = dt \\ 4 \: cotx \: dx \:  =  \: dt \\ cotx \: dx \:  =   \dfrac{dt}{4}

I \:  =  \dfrac{1}{4} \displaystyle\int \dfrac{dt}{t}

 =  \dfrac{1}{4}  \: logt \:  +  \: c

Answered by Anonymous
18

Answer :

Explanation :

Given,

 \displaystyle{ \sf \: l =  \int \:  \dfrac{cot \: x}{3 + 4 log(sin \: x) }.dx }

By Substitution Method,

Let u = 3 + 4log(sin x)

 \sf \:u = 3 + 4 log( sin \: x)

Differentiating both sides,

 \leadsto \:  \sf \: du =   \dfrac{4}{sin \: x} dx \:  \:  \times  \dfrac{d(sin \: x)}{dx}  \\  \\  \leadsto \:  \sf \: du =  \dfrac{4cos \: x}{sin \: x} dx \\  \\  \leadsto \:  \sf \: du = 4cot \: x.dx \\  \\  \leadsto \:  \sf \: dx =  \dfrac{du}{4cot \: x}

The integral can be modified as :

 \longrightarrow \:  \displaystyle{ \sf \: l =  \int \dfrac{ \cancel{cot \: x}}{u} . \dfrac{du}{ 4 \: \cancel{cot \: x}} } \\  \\  \longrightarrow \:  \displaystyle{ \sf \: l =   \dfrac{1}{4} \int \:  \dfrac{1}{u} .du} \\  \\  \longrightarrow \:  \sf \: l =  \dfrac{log(u)}{4}  + c \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf \: l =  \frac{ log(3 + 4 log(sin \: x) ) }{4}  + c}}

Similar questions