integration of cot square x/(csc square x+cscx)dx
Answers
Answered by
0
x + cos x + c
Step-by-step explanation:
Integrate cot²x/(cosec²x+cosec x)dx
Multiply Nr and Dr by the conjugate i.e. (cosec²x - cosec x),
= integrate cot²x*(cosec²x-cosec x) / (cosec²x+cosec x)*(cosec²-cosec x) dx
= integrate cot²x*(cosec²x - cosec x) / (cosec⁴x - cosec²x) dx
= integrate cot²x*(cosec²x - cosec x) / cosec²x*(cosec²x - 1) dx [As cosec²x-1 = cot²x]
=integrate cot²x*(cosec²x-cosec x) / cosec²x*(cot²x)dx
=integrate (cosec²x-cosec x) / cosec²x dx
=integrate cosec²x / cosec²x dx - integrate cosec x /cosec²x dx
= x - integrate (1/cosec x) dx
= x - integrate sin x dx [Integration sin x = - cos x+c]
= x - (- cos x) + c
= x + cos x + c
Similar questions