Physics, asked by chaturvarma2112, 10 months ago

integration of cotx /sinx dx =​

Answers

Answered by Anonymous
43

Question :

Evaluate

\sf\int\dfrac{\cot\:x}{\sin\:x}dx

Answer:

We have to evaluate :

\sf\int\dfrac{\cot\:x}{\sin\:x}dx

\sf\int\dfrac{\cos\:x}{\sin^2x}dx

Let \sf\:sin\:x=t

Now, Differentiate it with respect to x

\sf\implies\dfrac{dt}{dx}=\cos\:x

\sf\implies\:dt=\cos\:x\:dx

Then ,

\sf\int\dfrac{\cos\:x}{\sin^2x}dx

\sf=\int\dfrac{\cos\:x}{t^2}\times\dfrac{dt}{\cos\:x}

\sf=\int\dfrac{dt}{t^2}

\sf=\int\:t^{-2}dt

We know that

\sf\int\:x^n=\dfrac{x^{n+1}}{n+1}

Then ,

\sf=\dfrac{t^{-2+1}}{-2+1}+c

\sf=-t^{-1}+c

\sf=\dfrac{-1}{t}+c

\sf=\dfrac{-1}{\sin\:x}+c

It is the required solution !

Answered by rinayjainsl
1

Answer:

The value of given integral is

\int \frac{cotx}{sinx}  =  -  \frac{1}{sinx}  + c

Explanation:

Given integral is

I=\int \frac{cotx}{sinx} dx

We know that,

cotx =  \frac{cosx}{sinx}

Therefore,our integral becomes

I=\int \frac{cosx}{sin {}^{2}x } dx

We solve this by using substitution method.Let us assume that

sinx = z \\  =  > cosx.dx = dz

Substituting these terms in above integral,we get

I=\int \frac{dz}{z {}^{2} }  \\  = \int {z}^{ - 2} dz \\  =  \frac{ {z}^{ - 2 + 1} }{ - 2 + 1}  + c =   - \frac{1}{z}  + c

Substituting the value of z we get the integral as

 -  \frac{1}{sinx}  + c

Therefore,the value of given integral is

\int \frac{cotx}{sinx}  =  -  \frac{1}{sinx}  + c

#SPJ2

Similar questions