Math, asked by AbhaySharmaExe, 2 months ago

integration of dx/(12+12 cos x)​

Answers

Answered by BrainlyKingdom
3

\rm{\displaystyle\int \frac{dx}{12+12\cos \left(x\right)}}

  • Factor \sf{1/(12+12\cos \left(x\right))}

\rm{=\displaystyle\int \frac{1}{12+12\cos \left(x\right)}dx}

  • Take the Constant Out : \sf{\int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx}

\rm{\displaystyle =\frac{1}{12}\cdot \int \frac{1}{\cos \left(x\right)+1}dx}

  • Apply u - Substitution : \sf{u=\tan \left(x/2\right)}

\rm{\displaystyle=\frac{1}{12}\cdot \int \:1du}

  • Integral of a constant \sf{ \int adx=ax}

\rm{\displaystyle =\frac{1}{12}\cdot \:1\cdot \:u}

  • Substitute back : \sf{u=\tan \left(x/2\right)}

\rm{\displaystyle =\frac{1}{12}\cdot \:1\cdot \tan \left(\frac{x}{2}\right)}

\rm{\displaystyle=\frac{1}{12}\tan \left(\frac{x}{2}\right)}

  • Add a Constant to the Solution

\rm{\displaystyle =\frac{1}{12}\tan \left(\frac{x}{2}\right)+C}

Similar questions