integration of dx/√25-16x² ?
Answers
Answered by
0
int dx/(√25-16x²)
int dx/(√5²-(4x)²)
arcsin(4x/5)/4+C
int dx/(√5²-(4x)²)
arcsin(4x/5)/4+C
Answered by
2
x/√(25 - 16x²)
= ¼ ∫dx/√(5²/4² - x²)
Let x = 5sin(u)/4 ... hence u = sinֿ¹(4x/5)
dx = 5cos(u)du/4
= ¼ ∫(5cos(u)du/4)/√(5²/4² - 5²sin²(u)/4²)
= ¼∫(5cos(u)du/4) / (5/4)√(1 - sin²(u))
= ¼ ∫cos(u)du / √(cos²(u))
= ¼ ∫cos(u)du / cos(u)
= ¼ ∫du
= ¼u + C
= ¼ sinֿ¹(4x/5) + C
= ¼ ∫dx/√(5²/4² - x²)
Let x = 5sin(u)/4 ... hence u = sinֿ¹(4x/5)
dx = 5cos(u)du/4
= ¼ ∫(5cos(u)du/4)/√(5²/4² - 5²sin²(u)/4²)
= ¼∫(5cos(u)du/4) / (5/4)√(1 - sin²(u))
= ¼ ∫cos(u)du / √(cos²(u))
= ¼ ∫cos(u)du / cos(u)
= ¼ ∫du
= ¼u + C
= ¼ sinֿ¹(4x/5) + C
Similar questions