Integration of dx/a^2+x^2 is
Answers
Answer:
its integration is
1/a×tan^-1(x/a)+C
Step-by-step explanation:
hiiiii guys follow me....
Answer:
1/a tan⁻¹ ( x / a )
Step-by-step explanation:
To find ---> ∫ dx / ( x² + a² )
Solution--->
I = ∫ dx / ( x² + a² )
We do it by substitution method , for this
Let,
x = a tanθ
Differentiting with respect to x both sides, we get,
=> dx = a Sec²θ
Now, x = a tanθ
=> x / a = tanθ
Taking tan⁻¹ both sides we get,
=> tan⁻¹ ( x / a ) = θ
Now,
I = ∫ a Sec²θ dθ / { a² + ( a tanθ )² }
= ∫ a Sec²θ dθ / ( a² + a² tan²θ )
We know that, 1 + tan²θ = Sec²θ , using it here , we get,
= ∫ a Sec²θ dθ / a² ( 1 + tan²θ )
= ∫ Sec²θ dθ / a Sec²θ
Sec²θ , cancel , out from numerator and denominator
= ( 1 / a ) ∫ 1 dθ
= ( 1 / a ) θ + C
= ( 1 / a ) tan⁻¹ ( x / a ) + C
Additional information--->
1) ∫ dx / ( x² - a² ) = (1/2a) log (x -a)/(x + a) + C
2) ∫ dx / ( a² - x² ) = 1 / 2a log (a+x)/(a-x ) + C
3)∫ dx / √(a² - x²) = Sin⁻¹ ( x / a ) + C
4)∫dx/√(x²+a²) = log{x + √(x²+a²)} + C
#Answerwithquality
#BAL