Math, asked by tbasu6790, 10 months ago

integration of : ( dx / (root x(4x-25)))​

Answers

Answered by Anonymous
34

Question :

Integrate

\sf\int\dfrac{dx}{\sqrt{4x-25}}

Answer :

We have to Integrate

\sf\int\dfrac{dx}{\sqrt{4x-25}}

\sf=\int\dfrac{dx}{\sqrt{(2x)^2-(5)^2}}

Let, 2x = t then ,

\sf\implies2dx=dt

Then ,

\sf\int\dfrac{dx}{\sqrt{(2x)^2-(5)^2}}

\sf=\dfrac{1}{2}\int\dfrac{dt}{\sqrt{(t)^2-(5)^2}}

\sf=\dfrac{1}{2}\int\dfrac{dt}{\sqrt{(t)^2-(5)^2}}

\sf=\dfrac{1}{2}\log(t+\sqrt{t^2-5^2})

\sf=\dfrac{1}{2}\log(2x+\sqrt{4x^2-25})

Standard Formula's of Integration :

1)\sf\int\dfrac{1}{\sqrt{(x)^2-(a)^2}}=\log(x+\sqrt{x^2-a^2})

2)\sf\int\dfrac{1}{\sqrt{(a)^2+(x)^2}}=\log(x+\sqrt{x^2+a^2})

Similar questions