Math, asked by gravity011, 1 year ago

integration of( e^alnx+e^xlna)dx (a>0)​

Answers

Answered by Anonymous
9

GOOD \: MORNING \:  \\  \\ \: find \:  \:  \: integration \: of \:  \:  \\ (e {}^{a ln(x) }  + e {}^{x ln(a) } )dx \\  \\ integration \:  \: of \:  \\( e {}^{ ln(x {}^{a} ) }  + e {}^{ ln(a {}^{x} )} )dx \\  \\ integration \: of \:  \\ (x {}^{a}  + a {}^{x} )dx \\  \\ x {}^{(a + 1)}  \:  \:  \:  \  +  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a {}^{x}  \\ -  -  -   \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  - \:  \:  \:  \:  \:  + c\\ (a + 1) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   ln(a)  \\  where \: c \: is \: called \: constant \: of \: integration \: .

Answered by kk1000
0

Answer:

x^(a+1)/a+1 + a^x/log a + c

Step-by-step explanation:

Solution is in attachment.

Attachments:
Similar questions