Math, asked by balasubramanyamsai, 16 days ago

integration of e^x /√1-e^x with respect to dx​

Answers

Answered by senboni123456
7

Answer:

Step-by-step explanation:

We have,

\displaystyle\int\dfrac{{e}^{x}}{\sqrt{1-{e}^{x}}}\,dx

\bf{Put\,\,\,\,1-{e}^{x}={t}^{2}}

\bf{\mapsto\,\,\,-{e}^{x}\,dx=2{t}\,dt}

\bf{\mapsto\,\,\,{e}^{x}\,dx=-2{t}\,dt}

\displaystyle=\int\dfrac{-2t}{\sqrt{{t}^{2}}}\,dt

\displaystyle=-2\int\dfrac{t\,dt}{t}

\displaystyle=-2\int\,dt

\displaystyle=-2\,t+C

\displaystyle=-2\sqrt{1-{e}^{x}}+C

Answered by anindyaadhikari13
5

Solution:

Given Integral:

 \displaystyle \rm \longrightarrow I = \int \dfrac{ {e}^{x} }{ \sqrt{1 -  {e}^{x} } } \: dx

Let us assume that:

 \rm \longrightarrow u =1 - {e}^{x}

 \rm \longrightarrow \dfrac{du}{dx}  = -  {e}^{x}

 \rm \longrightarrow du= -{e}^{x}  \: dx

Therefore, the integral changes to:

 \displaystyle \rm \longrightarrow I = \int \dfrac{ - du}{ \sqrt{u}}

 \displaystyle \rm \longrightarrow I = -  \int \dfrac{du}{ \sqrt{u}}

 \displaystyle \rm \longrightarrow I = - \dfrac{ {u}^{ \frac{ - 1}{2}  + 1} }{ \frac{ - 1}{2}  + 1}  + C

 \displaystyle \rm \longrightarrow I = - \dfrac{ \sqrt{u} }{ \frac{1}{2}}  + C

 \displaystyle \rm \longrightarrow I = -2 \sqrt{u}  + C

Substituting back the value of u, we get:

 \displaystyle \rm \longrightarrow I = -2 \sqrt{1 -{e}^{x} }  + C

Therefore:

 \displaystyle \rm \longrightarrow \int \dfrac{ {e}^{x} }{ \sqrt{1 -  {e}^{x} } } \: dx = -2 \sqrt{1 -{e}^{x} }  + C

★ Which is our required answer.

Learn More:

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\  tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}

Similar questions