Math, asked by atulsoni888, 1 year ago

integration of e^x(1-sinx)/(1-cosx)

Answers

Answered by hukam0685
31

Step-by-step explanation:

Given:

 {e}^{x} . \frac{1 - sinx}{1 - cosx}  \\

To find: Integration of the function.

Solution:

We know that

 \int {e}^{x} (f(x) + f'(x))dx =  {e}^{x} f(x) + C\\  \\

So,try to convert this function in the form stated above.

 \int{e}^{x} . \frac{1 - sinx}{1 - cosx}dx  \\  \\ we \: know \: that  \\ 1 - cosx = 2 {sin}^{2}  \frac{x}{2}  \\  \\ sinx = 2sin \frac{x}{2} cos \frac{x}{2}  \\  \\

Split the term and apply identities

\int{e}^{x} .  \bigg(\frac{1 }{1 - cosx} -  \frac{sinx}{1 - cosx} \bigg) dx  \\ \\ \int{e}^{x} .  \bigg(\frac{1 }{2 {sin}^{2}  \frac{x}{2} } -  \frac{2sin \frac{x}{2} cos \frac{x}{2} }{2 {sin}^{2}  \frac{x}{2}} \bigg) dx  \\ \\ \int{e}^{x} .  \bigg(\frac{ {cosec}^{2}  \frac{x}{2} }{2 } -  cot\frac{x}{2} \bigg) dx  \\ \\  take \: ( - ) \: common\\  \\  - \int{e}^{x} .  \bigg(\frac{ -  {cosec}^{2}  \frac{x}{2} }{2 }  +   cot\frac{x}{2} \bigg) dx \\  \\ let \: f(x) = cot\frac{x}{2}  \\  \\ f'(x) = \frac{ -  {cosec}^{2}  \frac{x}{2} }{2 } \\  \\ thus \\  \\ \bold{\int{e}^{x} .  \bigg(\frac{1 }{1 - cosx} -  \frac{sinx}{1 - cosx} \bigg) dx =   -   {e}^{x} cot \frac{x}{2}  + C} \\  \\

Hope it helps you.

To learn more on brainly:

1)integration of sin x/sin x+cos x dx.

https://brainly.in/question/16108539

2)integration sin x Cos x/ sin x + cos x dx

https://brainly.in/question/1769690

Answered by charisma47
0

Answer:

thus

thus∫e x .( 1−cosx1 − 1−cosxssin )dx=−e x cot 2x +C )

Similar questions
Math, 1 year ago