Math, asked by raja111188, 1 year ago

integration of e^x cosnx dx

Answers

Answered by MarkAsBrainliest
58

Answer :

We solve the integration problem using by parts method.

Now,

 I = \int {e}^{x} cosnx \: dx

 = cosnx \int {e}^{x} dx - \int \{ \frac{d}{dx}(cosnx) \times \int {e}^{x} dx \} dx

 = {e}^{x} cosnx + n \int {e}^{x} sinnx \: dx

 = {e}^{x} cosnx + n \: sinnx \int {e}^{x} dx - n \int \{ \frac{d}{dx} (sinnx) \times \int {e}^{x} dx \} dx

 = {e}^{x} cosnx + n \: {e}^{x} sinnx - {n}^{2} \int {e}^{x} cosnx \: dx + c

where c is integral constant

 = {e}^{x} cosnx + n \: {e}^{x} sinnx - {n}^{2} I + c

 \implies I + {n}^{2} I = {e}^{x} cosnx + n \: {e}^{x} sinnx + c

 \implies ( {n}^{2} + 1 ) I = {e}^{x} cosnx + n \: {e}^{x} sinnx + c

 \implies I = \frac{ {e}^{x} cosnx + n \: {e}^{x} sinnx + c}{ {n}^{2} + 1}

 \implies \boxed{ \int {e}^{x} cosnx \: dx = \frac{ {e}^{x} cosnx + n \: {e}^{x} sinnx + c}{ {n}^{2} + 1}}

#MarkAsBrainliest

Similar questions
Math, 7 months ago