Math, asked by lopamudrasahu059, 1 year ago

integration of e^-x cosx​

Answers

Answered by shadowsabers03
2

We have to find,

\displaystyle\int e^{-x}\cos x\ dx

By product rule of integration, let,

u'=e^{-x}\quad\implies\quad u=-e^{-x}

How?

\displaystyle u=\int e^{-x}\ dx\\\\\\u=\int e^{-x}\cdot-d(-x)\quad \left[\because\ \dfrac {d(-x)}{dx}=-1\right]\\\\\\u=-\int e^{-x}\ d(-x)\\\\\\u=-\dfrac {e^{-x}}{\ln(e)}\quad \left[\because\ \int\ a^x\ dx=\dfrac {a^x}{\ln(a)}+c\right]\\\\\\u=-e^{-x}

And,

v=\cos x\quad\implies\quad v'=-\sin x

Thus, by product rule,

\displaystyle\int u'v=uv-\int uv'\\\\\\\int e^{-x}\cos x\ dx=-e^{-x}\cos x-\int-e^{-x}\cdot-\sin x\ dx\\\\\\\int e^{-x}\cos x\ dx=-e^{-x}\cos x-\int e^{-x}\cdot\sin x\ dx

Now, consider the integral,

\displaystyle\int e^{-x}\cdot\sin x\ dx

By product rule,

\displaystyle\int e^{-x}\cdot\sin x\ dx=-e^{-x}\sin x-\int-e^{-x}\cos x

Then,

\displaystyle\int e^{-x}\cos x\ dx=-e^{-x}\cos x-\left (-e^{-x}\sin x-\int-e^{-x}\cos x\ dx\right)\\\\\\\int e^{-x}\cos x\ dx=-e^{-x}\cos x-\left (-e^{-x}\sin x+\int e^{-x}\cos x\ dx\right)\\\\\\\int e^{-x}\cos x\ dx=-e^{-x}\cos x+e^{-x}\sin x-\int e^{-x}\cos x\ dx\\\\\\2\int e^{-x}\cos x\ dx=-e^{-x}\cos x+e^{-x}\sin x\\\\\\\boxed {\boxed {\int e^{-x}\cos x\ dx=\dfrac {e^{-x}(\sin x-\cos x)}{2}+c}}

Hence integrated!

#answerwithquality

#BAL

Similar questions