Math, asked by sahityavishnoi, 1 year ago

integration of log tanx

Answers

Answered by MaheswariS
16

I have solved this integral by substitution

method

Let\:I=\int{log\,tanx}\:dx

Take

t=log\,tanx

\frac{dt}{dx}=\frac{1}{tanx}sec^2x

\frac{dt}{dx}=\frac{1}{tanx}(1+tan^2x)

\frac{dt}{dx}=\frac{1}{t}(1+t^2)

\implies\:dx=\frac{t\:dt}{1+t^2}

Now,

I=\int{t\,\frac{t}{1+t^2}}dt

I=\int{\frac{t^2\:dt}{1+t^2}}dt

I=\int[\frac{(1+t^2)-1}{1+t^2}]dt

I=\int[\frac{1+t^2}{1+t^2}-\frac{1}{1+t^2}]dt

I=\int[1-\frac{1}{1+t^2}]dt

I=t-tan^{-1}t+C

\implies\boxed{\bf\,I=log\,tanx-tan^{-1}(log\,tanx)+C}

Similar questions