Math, asked by JitendraKumar2709, 11 months ago

integration of log2x

Answers

Answered by tanmayyadav87
5

Answer:

xlog(2x)−x+C

Step-by-step explanation:

log(2x)

Solution:-

∫log(2x)

Now integrating by parts

log(2x).(x)−∫12x.(2)(x)dx

xlog(2x)−∫2x2xdx

xlog(2x)−∫dx

xlog(2x)−x+C

Answered by pulakmath007
3

\displaystyle \sf{ \int \: log \: 2x \: dx  = xlog \: 2x- x + c}

Given :

\displaystyle \sf{ \int \: log \: 2x \: dx   }

To find :

The value of the integral

Solution :

Step 1 of 2 :

Write down the given Integral

Here the given Integral is

\displaystyle \sf{ \int \: log \: 2x \: dx   }

Step 2 of 2 :

Integrate the integral

We integrate by parts as below

\displaystyle \sf{ \int \: log \: 2x \: dx   }

\displaystyle \sf{ =  \int \: log \: 2x \: .1 \: dx   }

\displaystyle \sf{ = log \: 2x \int 1 \: dx - \int \bigg[ \frac{d}{dx} (log \: 2x) \int 1 \: dx\bigg]dx}

\displaystyle \sf{ = (log \: 2x) .x - \int \frac{2}{2x} .x \:  dx}

\displaystyle \sf{ = xlog \: 2x- \int 1 \:  dx}

\displaystyle \sf{ = xlog \: 2x- x + c}

Where c is integration constant

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions