integration of logcosxdx from 0to pi/2
Answers
Answer:
How do I integrate log (cos x) from 0 to pi/2?
What is the right budget for purchasing a premium domain name?
Your budget will depend on the sort of premium domain name that you’re looking for. The most valuable premium domain names are sho
Let I=∫π20lncosxdx
Observe the following:
∫π20lncosxdx=∫π20lnsinxdx
∫π0lnsinxdx=2∫π20lnsinxdx
Both of these assertions can be understood quite easily by sketching the sin and cos graphs or making elementary substitutions.
2I=∫π20lncosxdx+∫π20lnsinxdx
=∫π20lncosx+lnsinxdx
=∫π20lnsin2x2dx
=∫π20lnsin2x−ln2dx
=∫π20lnsin2xdx−∫π20ln2dx
=∫π20lnsin2xdx−πln22
Let u=2x
⟹dx=du2
When x=0,u=0 and when x=π2,u=π
⟹2I=∫π012lnsinudu−πln22
⟹2I=12∫π0lnsinudu−πln22
But recall that 2I=2∫π20lnsinxdx=∫π0lnsinxdx=∫π0lnsinudu (Here, x and u are interchangeable. They act somewhat like dummy variables.)
⟹2I=122I−πln22
⟹2I=I−πln22
⟹I=−πln22