integration of root cotx
adamsyakir:
hmm :D
Answers
Answered by
15
∫√cot x dx
=½∫[(√cot x+√tan x)+(√cot x−√tan x)] dx
=½∫[(cos x+sin x)/√(cos x sin x)] dx
+½∫[(cos x−sin x)/√(cos x sin x)] dx
=(1/√2)∫[(cos x+sin x)/√sin 2x] dx
+(1/√2)∫[(cos x−sin x)/√sin 2x] dx …..(i)
[since 2 cos x sin x=sin 2x]
Suppose sin 2x= z²
Therefore, cos 2x dx= z dz
or, (cos² x−sin² x) dx= z dz
or, (cos x+sin x)(cos x−sin x) dx= z dz
Now (cos x+sin x) dx
=z dz/(cos x−sin x)
=z dz/√(cos² x+sin² x−2 cos x sin x)
=z dz/√(1−sin 2x)
=z dz/√(1−z²) …..(ii)
Similarly, (cos x−sin x) dx
=z dz/√(1+z²) …..(iii)
From (i), (ii) and (iii),
∫√cot x dx
=(1/√2)∫z dz/z√(1−z²)+(1/√2)∫z dz/z√(1+z²)
=(1/√2)∫dz/√(1−z²)+(1/√2)∫dz/√(1+z²)
=(1/√2)[∫dz/√(1−z²)+∫dz/√(1+z²)]
=(1/√2)[sin-1 z+ln |z+√(1+z²)|]+c
=(1/√2)[sin-1 √sin 2x+ln |√sin 2x+√(1+sin 2x)|]+c
=(1/√2)[sin-1 √sin 2x+ln |√sin 2x+√(cos² x+sin² x +sin 2x)|]+c
=(1/√2)[sin-1 √sin 2x+ln |√sin 2x+cos x+sin x|]+c
Answered by
26
Integral of √cotx , or √tanx or x²/(1+x⁴) or of √cotx - √tanx or √cotx + √tanx are all related and similar....
Let cotx = t² => -(1+t⁴) dx=2t dt
Let y = t - 1/t so dy = (1 + 1/t²) dt
Let z = t + 1/t so dz = (1 - 1/t²) dt
Also 1/(z² - 2) = (1/2√2) * [ 1/(z-√2) - 1/(z+√2)] using partial fractions.
Let cotx = t² => -(1+t⁴) dx=2t dt
Let y = t - 1/t so dy = (1 + 1/t²) dt
Let z = t + 1/t so dz = (1 - 1/t²) dt
Also 1/(z² - 2) = (1/2√2) * [ 1/(z-√2) - 1/(z+√2)] using partial fractions.
Similar questions
History,
8 months ago
Math,
8 months ago
English,
8 months ago
Math,
1 year ago
Business Studies,
1 year ago