integration of root of x square + a square
Answers
Answered by
2
Let x=sinθ⟹dx=cosθ dθx=sinθ⟹dx=cosθ dθ
∴∫1−x2√x dx=∫1−sin2θ√sinθcosθ dθ∴∫1−x2x dx=∫1−sin2θsinθcosθ dθ
=∫cosθsinθcosθ dθ=∫cosθsinθcosθ dθ
=∫cos2θsinθ dθ=∫cos2θsinθ dθ
=∫1−sin2θsinθ dθ=∫1−sin2θsinθ dθ
=∫cscθ dθ−∫sinθ dθ=∫cscθ dθ−∫sinθ dθ
=ln|cscθ−cotθ|+cosθ+C=ln|cscθ−cotθ|+cosθ+C
=ln∣∣∣1x−1−x2√x∣∣∣+1−x2−−−−−√+
Step-by-step explanation:
I HOPE IT'S HELPFUL for you
Similar questions