Math, asked by Toni111, 1 year ago

integration of root over 1 + sec x dx

Attachments:

Answers

Answered by jitendra420156
7

\int\sqrt{1+secx}\ dx =2sin^{-1}(\sqrt{2} sin \frac{x}{2} )+C

Step-by-step explanation:

\int\sqrt{1+secx}\ dx

=\int\sqrt{\frac{1+cos\ x}{cos \ x} } \ dx             [ sec\ x =\frac{1}{cos\ x}  ]

=\int \sqrt{\frac{2cos^2\frac{x}{2} }{1-2sin^2\frac{x}{2} } } \ dx              [1+cos 2x=2cos^2x \ and \ cos2x= 1-2sin^2x]    

=\sqrt{2} \int\frac{cos\frac{x}{2} }{\sqrt{1+sin^2\frac{x}{2} } } \ dx

Let

sin \frac{x}{2} =z\\\\\frac{1}{2} cos\frac{x}{2} \ dx = dz

=2\sqrt{2} \int\frac{dz}{\sqrt{1-2z^2}}

=\frac{2\sqrt{2}}{\sqrt{2}}  \int\frac{dz}{\sqrt{(\frac{1}{\sqrt{2} } )^2-z^2}}

=2  sin ^{-1}\frac{z}{\frac{1}{\sqrt{2} } } +C

=2  sin ^{-1}{\sqrt{2}\ z} +C

=2sin^{-1}(\sqrt{2} sin \frac{x}{2} )+C   [sin \frac{x}{2} =z]

Similar questions