Math, asked by mohanadas, 1 year ago

integration of root x by root over a minus x dx

Attachments:

Answers

Answered by Swarup1998
3

To find: \mathsf{\int \sqrt{\dfrac{x}{a-x}}dx}

Step-by-step explanation:

Let, \mathsf{x=a\:sin^{2}\theta}

\Rightarrow \mathsf{dx=2a\:sin\theta\:cos\theta\:d\theta}

Now, \mathsf{\dfrac{x}{a-x}}

\mathsf{=\dfrac{a\:sin^{2}\theta}{a-a\:sin^{2}\theta}}

\mathsf{=\dfrac{a\:sin^{2}\theta}{a(1-sin^{2}\theta)}}

\mathsf{=\dfrac{sin^{2}\theta}{cos^{2}\theta}}

  • since \mathsf{sin^{2}\theta+cos^{2}\theta=1}

\mathsf{\Rightarrow \dfrac{x}{a-x}=\dfrac{sin^{2}\theta}{cos^{2}\theta}}

Taking square root to both sides, we get

\quad \mathsf{\sqrt{\dfrac{x}{a-x}}=\sqrt{\dfrac{sin^{2}\theta}{cos^{2}\theta}}}

\Rightarrow \mathsf{\sqrt{\dfrac{x}{a-x}}=\dfrac{sin\theta}{cos\theta}}

Taking the product of \mathsf{dx} in both sides, we get

\quad \mathsf{\sqrt{\dfrac{x}{a-x}}dx=\dfrac{sin\theta}{cos\theta}\:dx}

\Rightarrow \mathsf{\sqrt{\dfrac{x}{a-x}}dx=\dfrac{sin\theta}{cos\theta}\times 2a\:sin\theta\:cos\theta\:d\theta}

  • since \mathsf{dx=2a\:sin\theta\:cos\theta\:d\theta}

\Rightarrow \mathsf{\sqrt{\dfrac{x}{a-x}}dx=a\times 2\:sin^{2}\theta\:d\theta}

\Rightarrow \mathsf{\sqrt{\dfrac{x}{a-x}}dx=a\:(1-cos2\theta)\:d\theta}

  • since \mathsf{1-2\:sin^{2}\theta=cos2\theta}

\Rightarrow \mathsf{\sqrt{\dfrac{x}{a-x}}dx=a\:d\theta-a\:cos2\theta\:d\theta}

Taking integration to both sides, we get

\quad \mathsf{\int\sqrt{\dfrac{x}{a-x}}dx=a\:\int d\theta-a\:\int cos2\theta\:d\theta}

\Rightarrow \mathsf{\int\sqrt{\dfrac{x}{a-x}}dx=a\:\theta-a\:\dfrac{sin2\theta}{2}+C}

  • where \mathsf{C} is integral constant

\mathsf{\Rightarrow\int\sqrt{\dfrac{x}{a-x}}dx=a\:sin^{-1}(\sqrt{\dfrac{x}{a}})-\dfrac{a}{2}\times \dfrac{2}{a}\sqrt{x(a-x)}+C}

  • where \mathsf{\theta=sin^{-1}(\sqrt{\dfrac{x}{a}})}

  • and \mathsf{sin2\theta=\dfrac{2}{a}\sqrt{x(a-x)}}

\mathsf{\Rightarrow\int\sqrt{\dfrac{x}{a-x}}d =a\:sin^{-1}(\sqrt{\dfrac{x}{a}})-\sqrt{x(a-x)}+C}

This is the required integral.

Answer:

\mathsf{\int\sqrt{\dfrac{x}{a-x}}d =a\:sin^{-1}(\sqrt{\dfrac{x}{a}})-\sqrt{x(a-x)}+C}

where \mathsf{C} is integral constant.

Similar questions