Math, asked by ashokapr8553, 1 year ago

integration of sec^4/3x.cosec^8/3x dx

Answers

Answered by ldevasani572pd3dex
8

this is the answer for given question


Attachments:
Answered by talasilavijaya
0

Answer:

           \int sec^{\frac{4}{3} } x.cosec^{\frac{8}{3} } xdx=\frac{-3}{5} {tan^{\frac{-5}{3} x}+3 tan^{\frac{1}{3} }x}+C

Step-by-step explanation:

                                            I=\int sec^{\frac{4}{3} } x.cosec^{\frac{8}{3} } xdx

Since, \sec x=\frac{1}{cosx} \ \&\  cosecx=\frac{1}{sinx}

                                           I=\int \frac{1}{cos^{\frac{4}{3} }x }  .\frac{1}{sin^{\frac{8}{3} } x} dx

Dividing and multiplying {cos^{\frac{8}{3} } x

                                          I=\int \frac{1}{cos^{\frac{4}{3} } x}  \frac{1}{sin^{\frac{8}{3} } x} \frac{cos^{\frac{8}{3} } x}{cos^{\frac{8}{3} } x} dx

                                             =\int \frac{{sec^{4 } x} }{tan^{\frac{8}{3} } x} dx

Using sec^{2} x+tan^{2} x=1

                                           I=\int \frac{{sec^{2 } x} (1+tan^{2} x)}{tan^{\frac{8}{3} } x} dx

Let tan\ x=t\implies sec^{2} x\ dx=dt

                                          I=\int {(1+t^{2})(t^{\frac{-8}{3} })} dt

                                            =\int {t^{\frac{-8}{3} }dt+\int t^{\frac{-2}{3} }} dt

Using \int x^{n} dx=\frac{x^{n+1} }{n+1}

                                        I=\frac{-3}{5} {t^{\frac{-5}{3} }+3 t^{\frac{1}{3} }}+C

Substituting back, t=tan\ x

                                    I=\frac{-3}{5} {tan^{\frac{-5}{3} x}+3 tan^{\frac{1}{3} }x}+C

Therefore, \int sec^{\frac{4}{3} } x.cosec^{\frac{8}{3} } xdx=\frac{-3}{5} {tan^{\frac{-5}{3} x}+3 tan^{\frac{1}{3} }x}+C

Similar questions