integration of secpower4
Answers
Answered by
0
sec^4x = sec^2x(1 + tan^2x)
= sec^2x + sec^2xtan^2x
=> INT = tanx + (tan^3x)/3 + C
please mark me brainlist and follow me
= sec^2x + sec^2xtan^2x
=> INT = tanx + (tan^3x)/3 + C
please mark me brainlist and follow me
Answered by
0
Answer:
Step-by-step explanation:
∫sec^4 x dx
∫sec^2 x sec^2 x dx
sec^2 x ∫sec^2dx - ∫2secxsecxtanxtanx dx
sec^2 xtanx - ∫2sec^2 x tan^2 x dx
sec^2 xtanx-2∫sec^2 x (sec^2 x-1) dx
sec^2 xtanx-2{∫sec^4 dx - ∫sec^2 x dx}
∫sec^4 x dx = sec^2 xtanx-2{∫sec^4 dx - ∫sec^2 x dx}
3∫sec^4 dx = sec^2 x tanx +2tanx
∫sec^4 x dx=sec^2 xtanx /3 +2tanx/3
Similar questions