Integration of sin-1 root x - cos-1 root x /sin-1 rootx + cos-1 root x
Answers
Answered by
0
Step-by-step explanation:
Given Integration of sin-1 root x - cos-1 root x /sin-1 root x + cos-1 root x
- So we have ∫ sin^-1 √x – cos ^-1 √x / sin^-1 √x + cos ^-1 √x
- So we have sin^-1 theta + cos^-1 theta = π / 2
- So ∫ sin^-1√x – (π / 2 – sin^-1 √x) / π / 2 dx
- So we get 2/π ∫ (2 sin^-1√x – π/2 ) dx
- I = 4/π ∫ sin^-1 √x / I1 dx – 2/π x π/2 ∫ dx
- So I1 = ∫sin^-1 √x dx
- Now let √x = t
- Differentiating we get
- 1/2√x dx = dt
- So dx = 2t dt
- = 2 ∫ t sin^-1 t dt
- = 2 sin^-1 t ∫t dt – 2 ∫ (d sin^-1 t) / dt ∫t dt) dt
- = 2 t^2 / 2 sin^-1 t – 2 ∫ 1 / √1 – t^2 x t^2 / 2 dt
- = t^2 sin^-1 t + ∫ - t^2 / √1 – t^2 dt
- Add and subtract 1 we get
- t^2 sin^-1 t + ∫ 1 - t^2 + 1 / √1 – t^2 dt
- so t^2 sin^-1 t + ∫1 – t^2 / √1 – t^2 dt - ∫ dt / √1 – t^2
- So t^2 sin^-1 t – sin^-1 t + ∫√1 – t^2 dt
- So [∫√a^2 – x^2 dx = ½ x √a^2 – x^2 + a^2 / 2 sin^-1 (x/a) + C]
- So t^2 sin^-1 t – sin^-1 t + t √1 – t^2 / 2 + ½ sin^-1 t + C
- So t^2 sin^-1 t + t √1 – t^2 / 2 – ½ sin^-1 t + C1
- So I1 = (√x)^2 = x
- So I1 = x sin^-1 √x + √x √1 – x /2 – ½ sin^-1√x + C1
- So I = 4/π I1
- = 4/π (x sin^-1 √x + √1 – x^2 / 2 – ½ sin^-1 √x + C1) - ∫dx
- = 4/π (x sin^-1 √x + √1 – x^2 / 2 – ½ sin^-1√x + C1) – x + C2
- = 4x /π sin^-1√x + 2/ π√1 – x^2 – 2/π sin^-1 √x – x + C (4/π C1 + C2 = C)
Reference link will be
https://brainly.in/question/4272483
Answered by
0
Answer:
upper one is correct answer
Similar questions
Geography,
7 months ago
Social Sciences,
7 months ago
Science,
1 year ago
Geography,
1 year ago
English,
1 year ago