Math, asked by gunal6941, 1 year ago

Integration of sin-1 root x - cos-1 root x /sin-1 rootx + cos-1 root x

Answers

Answered by knjroopa
0

Step-by-step explanation:

Given Integration of sin-1 root x - cos-1 root x /sin-1 root x + cos-1 root x

  • So we have ∫ sin^-1 √x – cos ^-1 √x / sin^-1 √x + cos ^-1 √x
  • So we have sin^-1 theta + cos^-1 theta = π / 2
  • So ∫ sin^-1√x – (π / 2 – sin^-1 √x) / π / 2 dx
  •  So we get 2/π ∫ (2 sin^-1√x – π/2 ) dx
  • I = 4/π ∫ sin^-1 √x / I1 dx – 2/π x π/2 ∫ dx
  • So I1 = ∫sin^-1 √x dx  
  • Now let √x = t
  • Differentiating we get
  •  1/2√x dx = dt
  • So dx = 2t dt
  •          = 2 ∫ t sin^-1 t dt
  •          = 2 sin^-1 t ∫t dt – 2 ∫ (d sin^-1 t) / dt ∫t dt) dt
  •          = 2 t^2 / 2 sin^-1 t – 2 ∫ 1 / √1 – t^2 x t^2 / 2 dt
  •          = t^2 sin^-1 t + ∫ - t^2 / √1 – t^2 dt
  •      Add and subtract 1 we get
  •            t^2 sin^-1 t + ∫ 1 - t^2 + 1 / √1 – t^2 dt
  •      so t^2 sin^-1 t + ∫1 – t^2 / √1 – t^2 dt - ∫ dt / √1 – t^2
  •      So t^2 sin^-1 t – sin^-1 t + ∫√1 – t^2 dt
  • So [∫√a^2 – x^2 dx = ½ x √a^2 – x^2 + a^2 / 2 sin^-1 (x/a) + C]
  • So t^2 sin^-1 t – sin^-1 t + t √1 – t^2 / 2 + ½ sin^-1 t + C
  • So t^2 sin^-1 t + t √1 – t^2 / 2 – ½ sin^-1 t + C1
  • So I1 = (√x)^2 = x
  • So I1 = x sin^-1 √x + √x √1 – x /2 – ½ sin^-1√x + C1
  • So I = 4/π I1
  •       = 4/π (x sin^-1 √x + √1 – x^2 / 2 – ½ sin^-1 √x + C1) - ∫dx
  •       = 4/π (x sin^-1 √x + √1 – x^2 / 2 – ½ sin^-1√x + C1) – x + C2
  •     = 4x /π sin^-1√x + 2/ π√1 – x^2 – 2/π sin^-1 √x – x + C   (4/π C1 + C2 = C)

Reference link will be

https://brainly.in/question/4272483

Answered by shahanaaz90
0

Answer:

upper one is correct answer

Similar questions