Math, asked by shrutimishra707, 4 months ago

Integration of
sin 2x.cos 5x•dx​


Steph0303: :)

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int \sin(2x)  \cos(5x) dx \\

 =  \frac{1}{2}  \int2 \sin(2x)  \cos(5x) dx \\

 =  \frac{1}{2}  \int( \sin(7x)  -  \sin(3x) )dx \\

 =  \frac{1}{2}  \int \sin(7x) dx -  \frac{1}{2}  \int \sin(3x) dx \\

 =  \frac{1}{2} \times  (-  \frac{ \cos(7x) }{7} ) -  \frac{1}{2} \times  ( -  \frac{ \cos(3x) }{3} ) + c \\

 =  -  \frac{ \cos(7x) }{14}  +  \frac{ \cos(3x) }{6}  + c \\

Similar questions