Math, asked by virendra31, 1 year ago

integration of sin 2x /sin⁴x+cos⁴x dx

Answers

Answered by iHelper
7
Hello!

\int \dfrac{\sf sin(2x)}{\sf sin^{4}x + \sf cos^{4}x} \sf dx

\int \dfrac{\sf sin(2x)}{(\sf sin^{2}x)^{2} + \sf cos^{4}x} \sf dx

\int \dfrac{\sf sin(2x)}{ (\sf 1 - cos^{2}x)^{2} + \sf cos^{4}x } \sf dx

\int \dfrac{\sf sin(2x)}{(\sf 1 - 2cos^{2}x + \sf cos^{4}x + \sf cos^{4}x) } \sf dx

\int \dfrac{\sf sin(2x)}{ (\sf 2cos^{4}x - \sf 2cos^{2}x + \sf 1)} \sf dx

\int \dfrac{\sf sin(2x)}{ (\sf 4cos^{4}x - \sf 4cos^{2}x + \sf 1) + \sf 1 / 2} \sf dx

\int \dfrac {\sf 2sin(2x)}{ (\sf 2cos^{2}x - 1)^{2} + \sf 1} \sf dx

\int \dfrac{\sf 1}{(\sf 2cos^{2}x - \sf 1)^{2} + \sf 1} \sf 4\: \sf cosx \: \sf sinx \: \sf dx

Now,

\sf 2cos^{2}x - 1 = \sf u

\sf - 4\:cosx\: sinx\: dx = \sf du

Then,

\int \dfrac {\sf 1}{(\sf 2cos^{2}x - \sf 1)^{2} + \sf 1} \: 4 \: \sf cosx \: \sf sinx \: \sf dx

\int \dfrac{\sf 1 }{ (\sf u^{2} + \sf 1)} (\sf - du)

 - \int \dfrac{\sf 1} {(\sf u^{2} + \sf 1) } \sf du

\sf - arctan \:u + C

\boxed{\sf - arctan(\sf 2cos^{2}x - \sf 1) + \sf C}

Cheers!

Anonymous: whats that a(cap) for?
iHelper: Actually it is " × " symbol. But due to some reason it doesn't show it in LaTex
iHelper: I'll correct :)
iHelper: Sorry! It's Integration symbol
Similar questions