integration of sin^3(2x+1)
Answers
Answered by
0
I=∫sin
3
(2x+1)dx
Let, 2x+1=t
2dx=dt
I=
2
1
∫sin
3
(t)dt
We know that,
sin(3t)=3sint−4sin
3
t
4sin
3
t=3sint−sin(3t)
sin
3
t=
4
1
[3sint−sin(3t)]
I=
2
1
[∫
4
1
(3sintdt)−∫
4
1
sin(3t)dt]
I=
2
1
×
4
1
[3cost−
3
cos3t
]+c. substitute t=2x+1
I=
24
1
[9cos(2x+1)−cos(6x+3)]+c.
Similar questions