integration of sin^3 2x dx
Answers
Answered by
0
Step-by-step explanation:
∫sin32xdx=∫(2sinxcosx)3dx=8∫sin3xcos3xdx∫sin32xdx=∫(2sinxcosx)3dx=8∫sin3xcos3xdx
Now, we can proceed in two ways.
8∫sin3xcos3xdx=8∫sin3x(1−sin2x)cosxdx=8∫sin3x−sin5xd(sinx)=2sin4x−43sin6x+C8∫sin3xcos3xdx=8∫sin3x(1−sin2x)cosxdx=8∫sin3x−sin5xd(sinx)=2sin4x−43sin6x+C
or
8∫sin3xcos3xdx=8∫(1−cos2x)cos3xsinxdx=8∫cos5x−cos3xd(cosx)
Similar questions