Math, asked by lani844, 3 days ago

Integration of sin (3x+2) dx​

Answers

Answered by senboni123456
4

Answer:

Step-by-step explanation:

We have,

\displaystyle\int\sin(3x+2)\,dx

\mapsto\,\tt{Put\,\,\,3x+2=t}

\mapsto\,\tt{3\,dx=dt}

So,

\displaystyle\int\sin(t)\,\dfrac{dt}{3}

\displaystyle=\dfrac{1}{3}\int\sin(t)\,dt

\displaystyle=\dfrac{1}{3}\cdot\big\{-\cos(t)\big\}+C

\displaystyle=-\dfrac{1}{3}\cos(t)+C

\displaystyle=-\dfrac{1}{3}\cos(3x+2)+C

Similar questions