integration of sin^4x cos^4x
Answers
Answered by
1
Here is your answer...
===================
Let [text]\displaystyle I = \int \sin^4(x) - \cos^4(x) \, dx[/text]
[text]\displaystyle = \int (\sin^2(x) + \cos^2(x))(\sin^2(x) - \cos^2(x)) \, dx[/text]
[text]\displaystyle = \int \sin^2(x) - \cos^2(x) \, dx[/text] (As, [text]\sin^2(x) + \cos^2(x) = 1[/text])
[text]\displaystyle = \int -\cos(2x) \, dx[/text] (As, [text]\cos^2(x) - \sin^2(x) = \cos(2x)[/text])
[text]\displaystyle = \dfrac{-\sin(2x)}{2} + C[/text] (where [text]C[/text] is the arbitrary constant of indefinite integration)...
=========================
Hope it is useful....✌️✌️
===================
Let [text]\displaystyle I = \int \sin^4(x) - \cos^4(x) \, dx[/text]
[text]\displaystyle = \int (\sin^2(x) + \cos^2(x))(\sin^2(x) - \cos^2(x)) \, dx[/text]
[text]\displaystyle = \int \sin^2(x) - \cos^2(x) \, dx[/text] (As, [text]\sin^2(x) + \cos^2(x) = 1[/text])
[text]\displaystyle = \int -\cos(2x) \, dx[/text] (As, [text]\cos^2(x) - \sin^2(x) = \cos(2x)[/text])
[text]\displaystyle = \dfrac{-\sin(2x)}{2} + C[/text] (where [text]C[/text] is the arbitrary constant of indefinite integration)...
=========================
Hope it is useful....✌️✌️
Similar questions
English,
7 months ago
Business Studies,
7 months ago
Math,
7 months ago
Social Sciences,
1 year ago
Math,
1 year ago