Math, asked by saikrishna120801, 1 year ago

Integration of sin^8x-cos^8x/1-2sin^2xcos^2x

Answers

Answered by Swarup1998
22
\underline{\textsf{Solution :}}

\mathsf{Now,\:\int \frac{sin^{8}x-cos^{8}x}{1-2sin^{2}xcos^{2}x}dx}

\mathsf{=\int \frac{(sin^{4}x+cos^{4}x)(sin^{4}x-cos^{4}x)}{1-2sin^{2}xcos^{2}x}dx}

\tiny{\mathsf{=\int \frac{\{(sin^{2}x+cos^{2}x)^{2}-2sin^{2}xcos^{2}x\}(sin^{2}x+cos^{2}x)(sin^{2}x-cos^{2}x)}{1-2sin^{2}xcos^{2}x}dx}}

\mathsf{=\int \frac{(1-2sin^{2}xcos^{2}x)(sin^{2}x-cos^{2}x)}{1-2sin^{2}xcos^{2}x}dx}

\mathsf{=\int (sin^{2}x-cos^{2}x)dx}

\mathsf{=-\int (cos^{2}x-sin^{2}x)dx}

\mathsf{=-\int cos2x\:dx}

\mathsf{=-\frac{sin2x}{2}+C}

\textsf{where C is integral constant.}

\to \boxed{\small{\mathsf{\int \frac{sin^{8}x-cos^{8}x}{1-2sin^{2}xcos^{2}x}dx = -\frac{sin2x}{2}+C}}}

\textsf{Thus, solved.}

Swarup1998: :)
Anonymous: Awesome answer!
Similar questions