Math, asked by TARIF21, 7 months ago

integration of sin inverse (2x) dx.

Answers

Answered by Anonymous
9

Step-by-step explanation:

I think this answer is helpful to you

Attachments:
Answered by DeenaMathew
0

The integration of sin inverse (2x) is xsin^{-1}2x-\frac{1}{2}\sqrt{1+4x^{2} }

Given: f(x) = sin inverse(2x)

To Find: Integration of f(x)

Solution:

The function is sin^{-1} 2x

Now integrate it

\int {sin^{-1}2x } \, dx \\

put 2x = t

differentiate it with respect to x

2dx = dt

dx = dt/2

\frac{1}{2} \int\limit{sin^{-1} } \, dt

\frac{1}{2}(tsin^{-1}t-[\int\ {\frac{dsin^{-1}t }{dt} } \, tdt]\\\frac{1}{2}( tsin^{-1}t-[\int\frac{t}{\sqrt{1+t^{2} } } dt]\\\frac{1}{2}( tsin^{-1}t-I

I = \int\limits {\frac{t}{\sqrt{1+t^{2} } } } \, dt

Put 1+t²=z

2tdt = dz

tdt = dz/2

\frac{1}{2} \int\limits{\frac{1}{\sqrt{z} } } \, dx \\\frac{1}{2}2\sqrt{z}= \sqrt{z}

Put the value of z

I = \sqrt{1+t^{2} }

The integration of the equation is

\frac{1}{2}(tsin^{-1}t-\sqrt{1+t^{2} } )\\

Put the value of t

The final integration is xsin^{-1}2x-\frac{1}{2}\sqrt{1+4x^{2} }

Hence, the final integration isxsin^{-1}2x-\frac{1}{2}\sqrt{1+4x^{2} }

#SPJ3

Similar questions