Math, asked by sai123456789, 1 year ago

integration of sin(logx)+cos(logx)

Answers

Answered by ajeshrai
28
you can see your answer
Attachments:

sai123456789: r u studing cbsc syllabus
sai123456789: kkkl
sai123456789: you know telugu
sai123456789: k nice
sai123456789: i kept one question please ans
sai123456789: integral of g'(x)÷(g(x))^2 dx =
sai123456789: ans is (-1)÷(g(x))+c
Answered by boffeemadrid
10

Answer:

xsin(logx)+C

Step-by-step explanation:

We have to find the integration of sin(logx)+cos(logx), therefore

\int sin(logx)dx+\int cos(logx)dx

let \int sin(logx)dx=I_{1} and \int cos(logx)dx=I_{2}, then

I_{1}=\int sin(logx).1dx,

Integrating by parts, wehave

I_{1}=sin(logx).x-\int cos(logx){\times}\frac{1}{x}{\times}xdx

     =xsin(logx)-\int cos(logx)dx

Also, ^{I_{2}}=\int cos(logx)dx

I_{1}+I_{2}=xsin(logx)-\int cos(logx)dx+\int cos(logx)dx

                              =xsin(logx)+C

Similar questions